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large & they diverged at small £ Hence empirical
curves were drawn through the observed points, and
from the curves for layers 5 and 6 those for the other
layers were deduced. The corrected intensities for
elongated and contracted reflections were scaled in-
dependently, layer by layer, to the calculated structure
factors. When the same reflection occurred in both
sets, agreement was good, and mean values were
finally used.

References

ALBRECHT, G. (1939). Rev. Sct. Instrum. 10, 221.

BercrUIS, J., HaaNAPPEL, 1J. M., PoTTERS, M., Loop-
STRA, B. O., MAcGILLAVRY, C. H. & VEENENDAAL, A.L.
(1955). Acta Cryst. 8, 478.

Bracg, W. L. & Wesr, J. (1930). Phil. Mag. 10, 823.

BUERGER, M. J. (1956). Proc. Nat. Acad. Sci. Wash. 42,
776.

Core, W. F., SeruMm, H. & Tavror, W. H. (1951). Acta
Cryst. 4, 20.

ForsyTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.

Acta Cryst. (1962). 15, 1017

1017

Gay, P. (1953). Miner. Mag. 30, 169.

JELLINEK, F. (1958). Acta Cryst. 11, 677.

Lirson, H. & CocrraN, W. (1953). The Determination of
Crystal Structures. London: Bell.

Mecaw, H. D. (1956). Acta Cryst. 9, 56.

Mecaw, H. D., KempsTER, C. J. E. & RADOSLOVICH,
E. W. (1962). Acta Cryst. 15, 1017.

NewneaMm, R. E. & MEcaw, H. D. (1960). Acta Cryst.
13, 303.

Prirrres, D. C. (1954). Acta Cryst. 7, 746.

Raposrovicr, E. W. (1955). Thesis, Cambridge Univer-
sity.

RamacEANDRAN, G. N. & Srintvasan, R. (1959). Acta
Cryst. 12, 410.

Serum, H. (1951). K. Norske Vidensk. Selsk. Skr. No. 3.
Thesis, Trondheim.

Serum, H. (1953). Acta Cryst. 6, 413.

Tavror, W. H. (1933). Z. Kristallogr. 85, 425.

Tavror, W. H., DARBYSHIRE, J. A. & STRUNZ, H. (1934).
Z. Kristallogr. 87, 464.

WELLs, M. (1961). Thesis, Cambridge University.

WiLson, A. J. C. (1949). Acta Cryst. 2, 318.

The Structure of Anorthite, CaAl,Si,O,. II. Description and Discussion
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Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 5 October 1961 and in revised form 21 November 1961)

Anorthite has a felspar structure with the following particular features: (1) Si and Al tetrahedra
alternate, so that each O atom has one Si and one Al neighbour; there is no Si/Al disorder. (2) Si-O
and Al-O bond lengths show real variations within the same tetrahedron, the average value of each
increasing as the number of Ca neighbours of the O atom increases from zero to 2. (3) There are
4 independent Ca atoms, 6- or 7-coordinated : pairs related (topologically, not exactly) by the C-face-
centring translation have very similar environments, while those related by body-centring or by
z-axis halving are very markedly different. There is no disorder of Ca position. (4) If the tetrahedra
are grouped into the two topologically different types (distinguished conventionally by the sub-
scripts 1 and 2 for their tetrahedral atoms) all tetrahedra of the same type have qualitatively
similar bond-angle strains (i.e. departures from the tetrahedral angle of 109° 28’), independent of
their Si/Al content. Comparison with other felspars shows that the strains are characteristic of the
felspar structure, but are nearly twice as great in the felspars with divalent cations as in those with
monovalent cations. (5) Most of the bond angles at O are in the range 125-145°, but there are some
exceptionally large angles of about 165-170°.

These facts are explained by a model in which the building elements are nearest-neighbour bonds
and bond angles, endowed with elastic moduli, acted on by the only unshielded cation—cation
electrostatic repulsion, namely that acting across the centre of symmetry. The bond-angle strains
at Si and Al are qualitatively predicted by it, and agree with observation. Most of the distortions
of the felspar structure are common (qualitatively) to all felspars, depending on cation charge;
others depend on cation size. In contrast to these, the effects of Si/Al distribution are relatively so
small that discussion of them cannot usefully begin until the other larger effects have been clarified.

1. Introduction

Anorthite, CaAl2SizOs, is an important member of the
felspar family. Other members of the family, whose
structures have been determined in detail, and to

* Present address: Department of Physics, University of
Adelaide, Adelaide, Australia.

+ Present address: Division of Soils, Commonwealth
Scientific and Industrial Research Organisation, Adelaide,
Australia.

which reference will be made here, are listed in Table 1.
It was hoped that detailed comparison of the differ-
ences between members of the family would help our
understanding not only of the felspars as a whole
but also of the general character of three-dimen-
sionally-linked framework structures. This has proved
to be the case, as will be shown in what follows.
The method by which the structure was determined
was described in Paper I (Kempster, Megaw &
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Table 1
Composition Name Source Reference
KAISi 04 Sanidine Mogok, Burma (Spencer C), Cole, Serum & Kennard (1949)
heat-treated
Orthoclase Mogok, Burma (Spencer C) Jones & Taylor (1961)
Microcline (intermediate)* Kodarma, India (Spencer U) Bailey & Taylor (1955)
NaAlSi,O4 Low albite Ramona, California Ferguson, Traill & Taylor
(Emmons 29) (1958)
Quenched high albite Amelia Co., Virginia Ferguson, Traill & Taylor
(Emmons 31) heat-treated (1958)
CaAl,Si, 04 Anorthite (‘low anorthite’, Monte Somma, Italy Kempster (1957)
‘primitive anorthite’) (B. M. 30744) and this paper
BaAl,Si,04 Celsian Broken Hill, New South Wales Newnham & Megaw (1960)

(Segnit, 1946)

* A preliminary report on the structure of maximum microcline by B. E. Brown and S. W. Bailey appeared in the program
of a joint meeting of the Geological and Mineralogical Societies of America in November 1961. All references in the present

paper are to intermediate microcline.

Radoslovich, 1962), which includes a table of atomic
coordinates and their standard deviations. No attempt
was made, during that analysis, to distinguish between

Si and Al atoms, which were both given the symbol 7'
(‘tetrahedral atom’).

The space group is P1; the unit cell is primitive,

Fig. l{a)

Fig. 1. Projection down [010] of parts of structure bounded roughly by the following planes: (a) y= +0-3; (b) y=0-2, 0-8;
(¢) y=0-1, 0-4. Heavy lines indicate upper part of layer shown. The projection of the corners of the unit cell (origin of co-
ordinates) are marked with crosses in all diagrams. (Note. This is an inclined projection down [010] on (010). The drawing
differs very little from an orthogonal projection on the plane normal to [010], but in the latter case the axes z and z would
stick slightly out of the paper.)
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with dimensions approximately 8 x 13 x 14 A, which
means that the volume per lattice point is four times
that of typical felspars such as albite. Thus the true
cell consists of four subcells, equal in volume and with
closely similar but not identical contents. Each subcell
contains two formula units (Ca74Os) related by a
centre of symmetry; but, relative to an origin at the

THE STRUCTURE OF ANORTHITE, CaAl,Si,0g. IT

corner of the subcell, corresponding atoms in the four
subcells have slightly different coordinates.

It can be seen that atomic positions in subcells
related by the base-centring vector (z7) are more
closely similar than those related by the body-
centring vector (0:) or the c-axis halving (20).

Bond lengths and bond angles are given in Table 2,

Table 2. Bond lengths and angles
(a) Ca~O bonds in A

Ca(000) Ca(z10) Ca(z0c) Ca(0zc)
04(1000) 2618 04(1220) 2:471 04(120c) 2:476 0 4(10%¢) 2-459
04(100c) 2-500 0 4(122c) 2586 04(1200) 2:720 04(10¢0) 2-822
04(2000) 2-279 04(2270) 2-322 04(220¢) 2350 04(207c) 2-335
0.4(220c) 3-491 04(20ic) 3-762 0.4(2000) >4 04(2240) >4
04(200c) >4 0 4(2zic) 3:746 04(2200) 3-375 04(2020) 3-237
0Op(0000) 3-995 >4 >4 >4
0p(000c) 2-368 Op(0zic) 2-421 0p(0200) 2:464 05(0020) 2-413
O p(m00c) 3-836 O p(mzic) 3-247 0O p(m=200) 2-491 O p(m0:0) 2-496
0¢(0220) 3-088 0¢(0000) 3-543 O¢(00ic) 3-824 O¢(0z0c) 3-798
Oc¢(mzi0) 3:279 O¢(m000)  2-807 O¢(mO0ic) 2:565 O¢(mz0c) 2-568
0Op(0000) 2-423 0p(0220) 2-391 Op(020c) 2-397 Op(00zc) 2-382
Op(m000)  2:532 Op(mzi0)  2-771 Op(mz0c) 3-725 Op(m0ic) 3-876

Mean  2-544 Mean  2-538 Mean  2-495 Mean  2-496
(b) Individual 7-O bonds, in A
Atoms Atoms
Key no. of . Key no. of
tetrahedron T (0] Length tetrahedron T (0] Length
1. T,(0000) 04(1000) 1-647 9. T,(0200) 04(1200) 1-820
0p(0000) 1-641 0p(0z00) 1-755
0¢(0000) 1-575 0¢(0200) 1-701
0p(0000) 1-589 0p(0200) 1-755
2. T,(0040) 04(1020) 1-620 10. T,(02:0) 0 4(1210) 1-747
0p5(0020) 1-599 0p5(02:0) 1-733
0¢(0020) 1-585 0O¢(02:0) 1-708
0Op(0020) 1-661 Op(02:0) 1-796
3. T, (mz20c) 04(1z00) 1-618 11. T,(m00c) 04(1000) 1-794
O p(m=z0c) 1-626 Op(m00c) 1-723
O¢(mz0c) 1-617 O¢(m00c) 1-735
Op(m20c) 1-571 Op(m00c) 1-754
4. T, (mazic) 0.4(1220) 1-643 12. T, (m0zc) 0,4(100) 1-757
O pg(mzic) 1:600 O p(m0ic) 1757
Oc¢(mazic) 1-623 Oc¢(m0ic) 1-755
Op(mazic) 1-637 Op(m0ic) 1-695
5. T,(0200) 04(2200) 1-624 13. T,(0000) 04(2000) 1-784
0p5(0200) 1-589 Op(0000) 1-749
O¢(m0:0) 1-629 O¢(mz20) 1-723
0p(m00c) 1-611 Op(mz0c) 1730
6. T'5(0220) 0.4(22¢0) 1-606 14. T,(00:0) 04(2020) 1-782
0Op(0220) 1-652 05p(00:0) 1-792
O¢(m000) 1-617 Oc¢(mz00) 1-745
Op(m0ic) 1-566 O p(mazic) 1-692
7. T,(m00c) 04(200¢) 1-646 15. Ty (mz0c) 04(220¢) 1-754
Op(m00c) 1-559 Op(mz0c) 1-747
Oc¢(0zic) 1-601 Oc¢(004c) 1-706
0Op(0200) 1-603 0Op(0000) 1-769
8. T,(m0ic) 0 4(207c) 1-634 16. T'y(mzic) 0 4(22zic) 1-738
O p(m0ic) 1:628 Op(mzic) 1-696
O¢(020c) 1-622 0O¢(000c) 1-780
0p(0230) 1-629 05(00:0) 1-792
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Table 2 (cont.)

(¢) T—O bonds, tetrahedral means and r.m.s. deviations, in A

Key no. Atom ¢ &(r) |rs-group mean| Key no. Atom e &(r) |r¢-group mean|
1. T,(0000) 1-613 0-031 0-001 9. T,(0200) 1-758 0-034 0-009
2. T,(0020) 1-616 0-029 0-002 10. T,(02:0) 1-746 0-032 0-003
3. T, (m20c) 1-608 0-022 0-006 11. T,(m00c) 1-752 0-027 0-003
4. T, (mzic) 1-626 0-017 0-012 12. T, (m0ic) 1-741 0-027 0-008
5. T',(0200) 1-613 0-015 0-001 13. T,(0000) 1-746 0-024 0-003
6. T,(02i0) 1-610 0-031 0-004 14. T,(00:0) 1-753 0-039 0-004
7. T'5(m00c) 1-602 0-031 0-012 15. T'y(m20c) 1-744 0-023 0-005
8. T, (m0ic) 1-628 0-004 0-014 16. T, (mzic) 1-752 0-038 0-003

Mean 1-614 Mean 1-749
R.m.s. value 0-024 0-008 R.m.s. value 0-031 0-005
(d) 0-O distances in tetrahedron edges, in A
Key no. of
tetrahedron 04-0p 04-Oc¢ 04-0p Op-O¢ 0p-Op Oc¢-Op
1. 2-537 2-770 2-525 2-631 2-721 2-593
2. 2-518 2:702 2-540 2-651 2-680 2-711
3. 2-486 2-744 2-556 2-666 2-713 2-577
4. 2-598 2709 2-564 2-696 2-678 2-669
5. 2586 2-519 2-655 2-644 2-659 2-723
6. 2-636 2:520 2:639 2-743 2-550 2-678
7. 2-700 2-549 2-660 2:603 2-535 2-648
8. 2618 2:613 2651 2-706 2:663 2697
9. 2-725 3020 2-724 2-842 3-016 2-842
10. 2-594 3013 2:638 2-893 2-962 2-914
11. 2-839 2:946 2:705 2-867 2-892 2-886
12, 2679 2-:914 2-819 2-935 2-871 2-818
13. 2-895 2-752 2-803 2-886 2862 2-897
14. 2-712 2-690 2831 2:962 2936 2-944
15. 2-857 2-759 2-753 2-819 2-903 2:974
16. 2-791 2-797 2-840 2-876 2-870 2980
(e) Other short O-O distances and Ca—Ca distances, in A
Atoms Length Comment
05(0200)-0p(m2z00) 3-200 Ca(z0c) polyhedron edge
0p(00¢0)-0 g(m070) 3-063 Ca(0ic) polyhedron edge
0 g(mz00)-0¢(m0ic) 3-003 Ca(z0c) polyhedron edge
05(m020)-0¢(mz0c) 2-983 Ca(0ic) polyhedron edge
0¢(0270)-0 p(m000) 3146 Ca(000) polyhedron edge
0p(0000)-0 p(m000) 3:-054 Ca(000) polyhedron edge
0 p(0220)-0 p(mzi0) 2:993 Ca(zi0) polyhedron edge
04(1000)—0 4(100c) 3-217
0 4(120)—0 4(1zic) 3-245 Shared edges across centres
0 4(1200)—0 4(120c) 3-260 of symmetry
04(1020)-0 4(101c) 3-278
Ca(000)—Ca(00c) 3-983
Ca(210)~Ca(zic) 3-880 Short cation—cation distances across
Ca(200)-Ca(z0c) 4-055 centres of symmetry
Ca(020)—Ca(0ic) 4-160

using the notation of Megaw (1956). Their standard
deviations, calculated from the standard deviations
of the coordinates, o(x.) (see Paper I, §6), are as
follows: Ca-0, 0-0039; T-0, 0-0041; 0-0, 0-0053 A;
angle at 7', 0-4°; angle at O, 0-6°. Projections of the
structure are shown in Fig. 1.

Preliminary results, and conclusions about the Si/Al
arrangement, have already been reported (Kempster,
Megaw & Radoslovich, 1960).

2. Description of structure

2-1. T-0 bond lengths, and Al/Si distribution

Tt was mentioned in Paper I that the 7-O tetrahedra
divided themselves into two groups, the difference
between which became more marked as refinement
progressed. It is obvious from inspection of Table 2(b)
(and is confirmed below) that the difference is signif-
icant, and therefore the small and large tetrahedra
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Table 2 (cont.)
(f) Bond angles at 7', in degrees

Key no. of Atom Edge subtending angle at T'
tetrahedron
04-0Op 04-O¢ 04-Op 0p-O¢ O0p-Op Oc-Op
1. T,(000) 101-0 118-6 102-6 109-8 114-7 110-1
2. T.(007) 102-9 115-0 101-4 112.7 110-6 113-3
3. T'(m=20) 100-0 116-0 106-5 110-5 116-1 107-9
4. T (mz1) 106-4 112-1 102-8 113-5 111-7 109-8
5. T,(020) 107-2 101-5 110-3 110-5 112-4 114-3
6. T4(0z7) 108-0 102-9 112-6 114-1 104-8 114-6
7. T'4(m00) 114-8 103-4 109-9 110-8 106-6 111-4
8. Ty(m02) 106-8 106-7 108-7 112-8 109-7 112-1
9. T,(0=0) 99-3 1181 99-2 110-7 118-5 110-7
10. T,(0z3) 96-4 121-3 96-3 114-4 114-1 112-4
11. T,(m00) 107-6 113-2 99-3 112-0 112-5 111-6
12. Ty (m0s) 99-3 112-2 109-5 113-4 112-6 109-6
13. T,(000) 110-0 103-3 105-8 112-5 110-7 114-1
14. T,(002) 98-7 99-4 109-1 113-8 114-8 117-8
15. T,(mz0) 109-4 105-7 102-7 109-4 111-3 117-7
16. Ty(mzi) 108-7 105-3 107-1 111-6 110-7 113-2
(9) Bond angles at O, in degrees
(N Og O¢ Op

1000 136-2 0000 129-4 1328 137-8

1040 140-0 00:0 1359 130-8 124-6

1200 1353 0200 139-6 131-2 125-2

1240 1361 02i0 1283 1308 1326

2000 125-3 m000 170-8 130-5 140-3

2020 122-5 m0z0 145-3 130-9 166-9

2200 124-0 mz00 143-5 127-5 161-4

2270 125-9 mzi0 163-6 130-5 1385

must be identified as Si-rich and Al-rich respectively.
Small and large tetrahedra alternate in every direc-
tion, so that each O atom is shared by one small and
one large one. Since no assumptions about the nature
of the T atom were made at any stage in deriving this
result, it constitutes a direct proof of the ‘aluminium
avoidance rule’ put forward earlier (Loewenstein,
1954 ; Goldsmith & Laves, 1955).

The significance of bond-length differences can be
examined by Cruickshank’s (1949) test, based on the
ratio 6l/c, where 6l is the difference of the two quan-
tities to be compared, o1 and oz are their standard
deviations, and ¢2=¢}+ 65 The mean bond lengths
and deviations from the mean are recorded in Table
2(c).

We first notice that ¢(r), the r.m.s. deviation of a
bond from the tetrahedral mean, is much greater than
a(r), the standard deviation derived from o(x.). The
significance of this is demonstrated in Table 3 (1). It
shows that the differences of bond length within a
tetrahedron, though not very large, are real. At this
stage we merely note their existance, without trying
to discover their physical meaning.

Because of this effect, differences between tetrahedra
cannot be regarded as real unless they are significantly
greater than the average differences within tetrahedra.
Thus significance tests for tetrahedral means must be

based on comparisons of differences with &(r) rather
than with o(r).

It is next necessary to consider whether the mean
radii of tetrahedra in the same group differ signif-
icantly from one another. From Table 3 (2) it can be
seen that the differences are not significant. If the
test had been carried out using o(r) in place of &(r),
the ratios would have been 7 and 4 respectively,
indicating high significance. Thus we can say that,
while the differences between tetrahedral means are
real, they are only of the order of magnitude of
differences within tetrahedra, and therefore cannot
be used as evidence for different Si/Al ratios in the
atoms occupying them.

By contrast, we may apply the same test, using &(»)
to the difference between the group means (Table 3(3))
This difference is seen to be highly significant.

We now use the results of Smith (1954) to examine
the Si/Al ratios corresponding to the group mean
bond lengths. Smith’s values are 1-60+0-01 A for
Si-0, 1-78 +0-02 A for Al-0, and it would be reason-
able to assume, for statistical study, that his estimated
errors are about twice the standard deviation. How-
ever, Smith (1960) expresses doubt about the con-
stancy of the bond lengths within these limits in all
circumstances. To make some allowance for this,
we use the estimated errors as if they were s.d.’s.

’
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Table 3. Significance of bond-length differences
Key to symbols:
r¢ = tetrahedral mean bond length &(r) = r.m.s. deviation of single bond length
rg = group mean bond length o(r) = s.d. of single bond length calculated from o(x,)
rsm= Smith’s empirical bond length A(r) = Smith’s estimated limit of error
Set of Numer-  Denom- Cruickshank  Signif-
Quantities compared o4 ol tetrahedra ator inator ratio icance*
) Single bond a(r) r) (i) Small 0024 A 0-0044 A 55 High
Tetrahedral mean a(r)]2 & (ii) Large 0-031 0-0044 7 High
@) Tetrahedral mean &(r)[2 I ) | f (i) Small 0-014 0-013 1-1 Zero
Group mean &(r)|2Y8 Tg = T¢)max. \ (ii) Large 0-009 0-016 06 Zero
Group mean, small esi(r)/2V8 ) . . .
@) { Groub mmoam, small  esIEVE ) lwsi— 0o Al 0035 0007 5 High
(4) Smith’s bond length A(r) ro—r$ml f (i) Small 0-014 0-011 1-3 Zero
Group mean &(r)/2V8 g—"sm \ (ii) Large 0-031 0-041 1-5 Zero

* Significance levels are those suggested by Cruickshank (1949): ‘high’ and ‘zero’ correspond to probabilities of accidental
occurrence of <0-1% and > 5%, respectively, or 8l/c>3:1 and <1-65.

Then from Table 3 (4) it can be seen that the dif-
ferences of the group means from Smith’s values for
pure Si and pure Al are not significant. It is true,
of course, that no significance test is more objective
or carries more weight than the postulates on which
it is based; however, it is certainly clear that there
is no evidence from which we can reliably deduce any
departure from perfect Si/Al order.

It is perhaps worth noting that, from Smith’s
values, one would deduce the presence of 8% Al in
the Si-rich sites, 179 Si in the Al-rich sites. In view
of the particular difficulty experienced by Smith in
fixing the Al end of his scale, the latter estimate is
quite unreliable.

It is interesting that in both forms of BaAlsSi2Og,
the felspar celsian (Newnham & Megaw, 1960) and
the non-felspar paracelsian (Bakakin & Belov, 1960),
there is also a high degree of Si/Al order, and no
certain evidence that order is less than perfect (though
neither structure is so far refined as anorthite).
In celsian, the pattern of Si-rich and Al-rich sites is
the same as in anorthite.

Inspection of Table 2(c) suggests that the tetrahedral
means in anorthite differ less from the group mean
than would be expected from their variations within
a tetrahedron if the tetrahedra provided random
samples. This may be tested by comparing the two
estimates of the standard deviation of the group mean,
namely [r.m.s. value of &(r)])/)/(32) and (r.m.s. value
of (r¢-group mean)]/)/8. From Table 2(c) these are
0-0043 +0-0006 A, 0-0029 +0-0007 A respectively for
Si-0; 0-0055 + 0-00035 A, 0-0018 +0-00029 A respec-
tively for Al-O. The Cruickshank ratios are therefore
1-6 for Si-O, 8 for Al-O, indicating doubtful signif-
icance for the former, high significance for the latter.
Non-randomness could be caused by the pseudo-
symmetry discussed later (§3-3), but its more con-
spicuous manifestation for Al-O is rather striking:
it suggests that the volume occupied by an Al atom
is more nearly constant than would be expected if

it were controlled purely by the direct Al-O contacts.

The largest Si-rich tetrahedral mean in anorthite,
1-628 A, is not far from the Sig(m)-O tetrahedral
mean in reedmergnerite, NaBSizOg, (Clark & Apple-
man, 1960) which has the value 1-623 A. In reed-
mergnerite (which has the felspar structure) there is
no possibility of attributing the large value to Al
substitution. This supports the conclusion previously
reached that it is unsafe to do so in anorthite.

The results of this section may be summed up by
saying that the structure contains a regular alternation
of Si and Al tetrahedra, such that any O atom has
one Si neighbour and one Al; that the ordering of
Si and Al is perfect, within the limits of experimental
error (which suggest that disorder is in any case less
than 10%); that the individual bond lengths within
tetrahedra vary slightly, but that the tetrahedral
means are rather more uniform than would have been
expected if the individual variations were wholly
random.

2.2, Environment of Ca

Since there are four different subcells, there are four
differently situated Ca atoms. The Ca-O distances
are listed in Table 2(a), the seven shortest for each
Ca on the left-hand side of the column, other distances
of less than 4 A on the right. The distances on the
left-hand side include all up to 3-1 A, and the O atoms
concerned may be counted as neighbours; each Ca
is then 7-coordinated. One of these distances, however,
—the O¢ bond of Ca(000)—is so much longer that
any of the others that it might have more meaning
physically to count it as a non-bonding contact, and
take this Ca as 6-coordinated. No arguments depend
critically on which choice is made; indeed with ir-
regularly coordinated atoms like Ca there is not much
significance attached to any such choice.

All other bonds are within the usual range for Ca—O,
except that from Ca(000) to O4(2), which is excep-
tionally short. Bonds from cation to O4(2) tend to be
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short in most felspars, and in anorthite the 04(2)
bonds of the other three Ca’s are also short.

It can be seen that the configurations round
Ca(20c¢) and Ca(0ic) resemble one another very closely;
Ca(000) and Ca(z:0), though not quite so much alike,
nevertheless resemble each other much more than
they do the other Ca’s.

Ca(000) Ca(z00) o, (mz0c)
03(000c) 05(020¢)
04(1000)
©0,(2000 OA(100¢) 04(1200)
x(2000) o,ii 20¢)
0O5(0000) Op(0200)
O5(m000)
Cal0i0)  Oy{moic) Ca(zi0) )
05(00ic) 5(0zic)
TR Oc(m000) Ou12i0)
Oc(mz00). . b Ou2210) o ON1zic)

O4(20i0)| ° 4TI/~ 0A10i0)

& :
05{02i0)
Op(mzi0)

X

Fig. 2. Stereograms of environment of the four Ca atoms.
Intersections of the small circles and diameters shown with
dashed lines are at the corners of a regular cube. Where the
symbols of two atoms are written together the upper sym-
bol refers to the atom in the upper hemisphere.

0,(00i0)

Stereograms showing the directions of the Ca—Q
bonds are given in Fig. 2. (Note that the groups related
by subscript ¢ are related by a true centre of sym-
metry; it is more convenient here to consider Ca(200)
and Ca(0:0) than the equivalent (Ca(z0c) and Ca(0ic)).
The general resemblance of the coordination to a
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distorted cube with one corner missing (or two corners
for Ca(000), if this is taken as 6-coordinated) can be
seen. In more detail, one may note that four bonds
(to two O4(1) and two Oz or two Op atoms) approx-
imate rather closely to cube-corner directions, the
bond to Oa(2) lies roughly along the bisector of the
angle between the two O4(l) bonds, and the other
toms fait in as best they can. It is as if the steric
necessity to fit the O4(2) atom in this direction,
at a rather short distance, upset the regular angular
arrangement of the neighbouring O’s.

It is often said that the large cations in a felspar
are situated in a ‘cavity’ in the Si/Al-O framework.
This suggests that they are perhaps rather loosely
held in place, or that there may be more than one
possible position for them. It is true that there is a
large cavity enclosed by 10 oxygen atoms, but in
anorthite the corrugations of its walls are such as to
grip each Ca atom tightly. This central interstice has
two essentially different shapes, one bounded by two
Oz’s and one Op, one by one Op and two Op’s. If the
coordinates of Ca in one such interstice are altered
by z=1%, it will not fit into the other interstice; one
of the distances to O or Op is impossibly short.
The same is true of any other such interchanges
(cf. Table 4). )

The isotropic B value of about 1-0 A2 is comparable
with that found for the cation in other felspars;
the accuracy with which it or its anisotropy is deter-
mined is not great enough to draw elaborate con-
clusions. It is certainly larger than for the other atoms.
Whether it represents a true thermal vibration of
r.m.s. amplitude about 0-1 A, or a random distribution
of Ca atoms within about 0-1 A of a mean position
(which might result from ‘frozen-in’ thermal am-
plitudes), cannot be decided on present evidence.
Outside these limits, there is no evidence for Ca
disorder, and any displacement of Ca would need
corresponding changes in the shape of the framework
to make room for it.

Table 4. Bond lengths (in A) with Ca placed at ‘right’ and ‘wrong’ sites in subcell

(A ‘wrong’ site is one derived by adding } to all the coordinates of a Ca atom
whose symbol differs by ¢ from that of the right atom for the subcell)

Subcell 00 Subcell z0 Subcell 07 Subcell z2
. Right Wrong Right Wrong Right Wrong Right Wrong
Neighbours  Ca(00)  Ca(0%) Ca(z0)  Ca(zi) Ca(0s)  Ca(00) Ca(z)  Ca(20)
O4(1) 2-62 2-19 2-48 2-65 2-46 2-85 2-47 2-30
O4(1) 2-50 2-72 2-41 2-82 2-28 2:59 2-87
04(2) 2:28 2:34 2:35 2:31 2-34 2-31 2:32 2-35
Op 2:37 2-27 2-46 2-63 2-41 2-60 2:42 2:30
Op 2-92 2-49 2-50 2:72
Oc¢ (3-09) 2-61 2-57 2-87 2-57 2-81 2-50
O¢
Op 2-42 2:68 2-40 2-16 2-38 2-17 2-39 2-67
Op 2-53 2-93 2:77

(Ca~O bond lengths of 2:30 A and less are regarded as too short to be stable unless in exceptional cases, e.g. the bond to
04(2) which is abnormally short in most felspars. Unsatisfactory values are shown in italics.)



HELEN D. MEGAW, C.J. E. KEMPSTER AND E. W. RADOSLOVICH 1025

Table 5. Electrostatic valence

No. of Ca  Electrostatic
O atoms in group neighbours valence
Group 1 04(100), 04(10¢), O4(120), O4(127) 2 2-32
(4 altogether)
Group 2 04(200), 04(207), 04(220), 04(2z¢), 0Op(000),
05(00¢), Op(020), Op(02t), Op(m ) 0p(mz20),
Oc¢(0zi), Oc¢(m00), Oc(m0i), Oc(mz0), Op(000), 1 2-04
Op(00¢), Op(020), Op(0zz), (mOO) Op(mzz)
(20 altogether)
Group 3 Opg(m00), Op(mzz), O¢(000), Oc(007), Oc(0z0),
Oc¢(mzi), Op(mO0i), Op(mz0) 0 1-75

(8 altogether)

Table 6. Bond angles at oxygen in various felspars

Angles are given in degrees, rounded off to the nearest degree
Where independent values are taken together in a group, the extreme values are recorded,
and also (in brackets) the mean of the group

Microcline Low albite High albite Orthoclase Celsian Anorthite

04(1) 144 142 144 144 139 (137)
135-140

04(2) 140 131 133 139 135 (124)
122-126

OB (153) (150) (149) 153 (150) (144)
152-155 . 140-160 142-155 150 128-171

Oc¢ (131) (130) (131) 131 (129) (131)
130-132 125-135 128-134 127-130 128-133

Op (142) (141) (140) 142 (139) (141)
140-144 134147 136-144 138-139 125-167

2-3. 0-0 distances, and bond angles at Si and Al

These are recorded in Table 2(d), (e), and (f). Since
the standard error in the determination of bond angle
is about 0-5°, the difference of the angles from the
tetrahedral value are real; their structural significance
will be left for discussion in § 3-3.

2-4. Environment of O atoms, and bond angles at O

Each O atom has one Si neighbour and one Al;
the angle between these two bonds is recorded in
Table 2(g). In addition, many of the O’s have Ca
neighbours: each O4(1) has two, as in other felspars,
and most other O’s have one, but certain O’s have
none within what are regarded as effective bonding
distances. Table 5 shows the symbols of the atoms in
each group, and their electrostatic valence. (Here

Ca(000) is counted as 7-coordinated; the effect of
counting it as 6-coordinated would be to transfer
Oc(027) from group 2 to group 3, with negligible effect
on any of the arguments for which this classification
is later used).

The bond angles at O resemble in a general way
those in other felspars (Table 6), but on the whole
show a larger spread of values. They are of the order
of magnitude of those found in other silicates (cf.
Liebau, 1960). Detailed discussion is left to § 3-3.

The average temperature factor for O has a B-value
of 0-6 Az (Paper I). This, though not very accurately
determined, is still appreciably lower than the values
found in some other felspars (Table 7). It is an indica-
tion that we are here dealing with an ordered structure,
and that the O atoms are not spread over a wide range
of neighbouring positions in different unit cells, as

Table 7. Isotropic B values in A2

Microcline Low albite Sanidine Orthoclase Celsian Anorthite = Reedmergnerite
Large cation 1-0 1-3 1-9 1-0-1-5 0-5-1-2 0-3-1-0 1-23
T — — — 0-6 0-6* 0-2 0-33t
o — — — 1-2 1-2* 06 0-67%

* These figures refer to the penultimate stage of refinement, when the structure was still being treated as if there were complete
Si/Al disorder. No revised estimates were made at the later stage.
1 Information kindly supplied by Dr D. E. Appleman, 1962.
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must inevitably happen if Si and Al are distributed
at random in the tetrahedral sites, because of their
difference of radii.

3. Discussion

3-1. Concept of structure as a framework built from elastic

‘building elements’

There is much to be gained from a consideration
of the anorthite structure as if it were a construction
built on engineering principles, according to the
macroscopic laws of statics. We first consider the
Si/Al-O framework, neglecting the large cation.
Suppose all 8i-O and Al-O bonds are rigid rods with
lengths of 1-61 units and 1-75 units respectively, all
angles at Si and Al are exactly tetrahedral, and all
angles at O exactly 130°; O-O contacts, between
different tetrahedra, of less than 2-7 A are forbidden.
Attempts to build a structure resembling that of
felspars, and repeating itself with a parallelepiped of
approximately 8x13x7 units, will probably show
that it cannot be done. We must endow our building
elements with elasticity—the rod lengths with a
Young’s modulus, the hinge angles with a rigidity
modulus. It may then prove possible to build the
required periodic structure. The existence of the
felspars proves that it is possible but suggests also
that the structure will not be in stable equilibrium
(in the sense used in statics) unless it is propped
open with spacers of appropriate size, namely
spheres of radius about 1 to 1-3 units. If the role of
the large cation were merely to maintain electrical
neutrality we should expect to find felspars in which
magnesium, and possibly beryllium and lithium, could
play this part. As it is, the hinged framework shears
till the forces due to elastic compression of the spacer
are called into play, and, when the spacer is large
enough, equilibrium results. In determining the de-
tailed nature of the shear, the electrostatic forces play
their part.

In this process, all the bond lengths and bond angles
are necessarily strained from their ideal values; the
amount of strain adjusts itself at each, so that over
the structure as a whole the energy is a minimum.
Thus there are intrinsic strains in the various building
elements when the structure as a whole has its
equilibrium configuration.

Assuming a knowledge of the unstrained dimensions
of the building units and their elastic constants, and
a Hooke’s law relation between stress and strain,
one could in theory set up equations from which to
derive the equilibrium configuration and all individual
strains. In practice the mathematical solution of the
equations might be too difficult. For a crystal structure
there are the further difficulties (i) that we do not
know our unstrained lengths and angles, because they
never exist in isolation, (ii) that we cannot be sure of
the validity of a Hooke’s law approximation, and
(i) that the elastic constants themselves may depend
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on such influences as the electrostatic field of neigh-
bouring atoms. Nevertheless an empirical examination
of bond lengths and angles along these lines, taking
the strains as deviations from the best estimated mean
value, provides a useful starting point.

It turns out that the model needs to be adapted to
allow for electrostatic attractive and repulsive forces
emanating from the large cations, as well as the
homopolar (or semipolar) attractive forces in the
framework, and the repulsive forces within the frame-
work and between cation and oxygen. These will be
considered in more detail later.

3-2. Framework and ‘lattice’ vibrations

This girder-type model enables us to understand
the doubling of the unit cell additional to that required
by the Si/Al alternation. If all bond lengths and bond
angles are strained in order to achieve a periodic
repeat, doubling the period doubles the numbers of
atoms over which the strain is to be distributed, and
therefore (roughly) halves the individual strains with
a consequent reduction in strain energy.

One may then ask why, if longer periods lower the
strain energy, periodic structures are ever achieved ?
The answer lies in the fact that we have so far
considered only potential energy. An actual macro-
scopic structure has natural frequencies corresponding
to modes of vibration, and kinetic energies associated
with them. The corresponding features of the crystal
structure are the ‘lattice vibrations’ and their contri-
bution to the free energy. Presumably this part of the
energy is so much less for a periodic structure that it
more than compensates for the extra strain energy.
It is, however, temperature-dependent; and a tran-
sition to a structure of half the period at higher
temperatures could be caused by a changing distri-
bution of energies between the available vibration
modes in a way which favoured shorter wave lengths.

The very small variations in Si-O bond lengths,
and the only slightly larger variations in Al-O, show
that these bonds are elastically stiff; by comparison
the Ca—O bonds are elastically compliant. A similar
contrast is seen for Si and Al bond angles on the one
hand, Ca bond angles on the other. It is therefore to
be expected that the Si/Al-O framework will vibrate
as a whole, in ‘lattice’ modes, while Ca will vibrate
more nearly independently, in Einstein modes. (This
Is perhaps a crude approximation, but it is only in-
tended to give a qualitative picture). Since the force
constants of the Ca—O bonds are smaller than of
bonds and angles in the framework, and the effective
mass concerned in the framework vibrations is greater
than that of a single Si/Al or O atom, the vibration
amplitudes of Ca are likely to be larger than those of
Si/Al or O. This agrees with the observations of B
values in anorthite, and also in reedmergnerite, the
only other perfectly ordered structure for which
detailed information is available.

Again, since the spread of values of bond angles
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at O suggests that such angles are elastically more
compliant than those at Si and Al, and since moreover
the greater mass of Si/Al compared with O might
tend to make them act as nodes for the standing waves,
it is reasonable to expect that Si/Al amplitudes should
be still less than O-amplitudes. This is observed.
It may be related to the smaller difference parameters
of T atoms compared with O atoms (Paper I, Table 5
and Table 9), as if the 7" atoms tended to stay as fixed
points during the distortions of the parts of the
structure round them. The B values recorded for
other felspars are in accordance with these ideas
(cf. Table 7); but when Si/Al disorder is believed to
be present in the structure (as in the simplest inter-
pretation of orthoclase) or is simulated by an averaging
process at the stage at which the B values are com-
puted (as was true of celsian, and is a possible inter-
pretation of orthoclase) care has to be taken in estimat-
ing the effects of thermal vibration, because the
experimental evidence does not distinguish between
this and disorder broadening of the peaks. It is
therefore rather surprising that in both orthoclase and
celsian the B values for Si/Al are so low; it is ob-
viously due to the same physical cause as the small
size of the difference of T' coordinates in anorthite.
In both orthoclase and celsian the disorder broadening
is manifested in B values for oxygen which are much
larger than those in the ordered structures. For the
A cations, if the very large anisotropy in the albites
is attributed to disorder, and the smaller anisotropy
in some of the others is ignored, all have isotropic
B values of about 1 to 2 A.

3-3. Detailed examination of intrinsic strains

We proceed to examine the intrinsic strains of
individual bond lengths and bond angles, to see what
regularities can be noted and how far they can be
correlated with each other or with physically reason-
able causes.

(i) Bond angles at O

Since, of all the ‘building elements’ of the structure,
these show the greatest spread, and are therefore most
compliant, it is convenient to consider them first.

Table 2(g) shows that a classification according to
the type of atom (A4(1), 4(2), B, C, or D) is a natural
one for demonstrating regularities. At Oc, the angles
are all closely alike (~ 130°), not only in anorthite
but in other felspars (Table 6). There is similar con-
sistency at O4(1), with slightly lower values (~ 138°)
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for the 14 A felspars than for the 7 A felspars (~ 143°).
At O4(2) the angles in anorthite are even more
consistent as a group, but conspicuously lower than
in any other felspar. At Op and Op there is much
more spread in all felspars, and in anorthite it is so
great that there is not much significance in recording
the mean.

The Op and Op atoms at which very large angles
(160-170°) occur are those which have no Ca neigh-
bour. At first glance one might try to correlate large
angles with low electrostatic valence. This, however,
cannot be substantiated by consideration of the
other O bond angles, since comparison with Table
5 shows that (a) high values of electrostatic valence
at O4(1) are associated with normal bond angles,
and normal values at O4(2) with low bond angles,
(b) similar values at 04(2) and half the O¢’s are
associated with different bond angles, (c) different
values for two sets of Oc¢’s are associated with similar
bond angles. These qualitative comparisons can be
substantiated by detailed statistics. It must be con-
cluded either that the electrostatic field does not play
a large part in controlling the bond angles or that
the simple treatment of the field embodied in the
Pauling rules for electrostatic valence is inadequate
for evaluating its effect on bond angle.

In fact it seems much more likely that steric effects
(depending on repulsive forces) play the main part
in determining the oxygen bond-angle strains. One
piece of supporting evidence is the fact that ab-
normally high angles at some Op, Op sites are com-
pensated by low values at others within the same ring
of four linked tetrahedra, so that the means for each
ring are very much alike (Table 8). It is very notice-
able that, for these angles as for the Ca environments,
the closest resemblance among the four subcells is
between those related by the base-centring operation
zi. This point will be considered further below.

(ii) Si-O and Al-O bond lengths

The grouping of bond lengths to show up regularities
in their strains may be tried in three ways, as follows
(grouping into tetrahedral means having been shown
to smooth out differences rather than emphasize
them). The first way is according to the number of
Ca neighbours of the O atom, as given in Table 5.
The results are shown in Table 9. There is obviously
a significant shortening for group 3 as compared with
group 2; between groups 1 and 2 the differences for
Si and Al separately are not (formally) significant,

Table 8. Bond angles (in degrees) in the four different Os—Op rings

Atom Angle Atom Angle Atom Angle Atom Angle
05(0000)  129-4 Ogp(mzi0)  163-6 05(0200) 1396 Op(m0i0) 1453
0p(0000) 137-8 Op(mzi0) 138:5 Op(0200) 125-2 Op(m0i0) 1669
O p(mz0c) 143-5 Op(00ic) 135-9 Op(m00c)  170-8 Op(0zic) 1283
Op(mz0c) 161-4 Op(00:c) 124-6 Op(m00c) 140-3 Op(0zic) 132-6

Mean 143-0 Mean 140-6 Mean 144-0 Mean 143-8
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Table 9

(@) Comparison of 7-O bonds according to environment of O

Mean bond length

S.d. of mean bond length

No. of Ca
neighbours Si-0 Al-O Si-0 Al-O
Group 1 2 1632 A 1-780 A 0-007 A 0-015 A
Group 2 1 1-622 1-755 0-005 0-006
Group 3 0 1-588 1-719 0-008 0-009
(b) Significance tests
Group 1-2 Group 2-3
Cruickshank significance Si 10/(72+5%)% =1-16 34/(52+82)% =3-62
ratio cs Al 25/(152 4 62)% =1-56 36/(62492) =3-33
Probability of accidental ( Si 0-12 < 0-001
occurrence of observed { Al 0-06 < 0-001
difference* Joint 0-007 <108

* Calculated from Cruickshank’s expression, P=}— } erf (cs/)/2).

but since the probability for their joint occurrence
accidentally is the product of the separate prob-
abilities, the combined effect is significant. (Errors in
the coordinates of any O, which would affect both
its bonds, would tend to do so in opposite directions,
because the bond angle is greater than 90°; hence
they could not give rise to systematic differences in
the same direction between both kinds of bonds).

The second way of grouping bonds is according to
the type of O atom, which proved effective for O bond
angles. Average values for both kinds of bonds
involving Oa(l) are slightly larger than for those
involving Ou(2), and these again than for bonds
involving Og, O¢, Op, which show no consistent trend;
but none of the differences is large enough to be
significant. Bonds to O4(2), which is linked by the
abnormally short bond to Ca, are if anything longer
than normal; hence the shortening of Ca—04(2) is not
due to stresses exerted on O4(2) by its T neighbours.

The third way is a comparison of 7-0 bond lengths
with bond angle at O. This showed no detectable
regularity, except what could be accounted for by the
fact that the four atoms with largest angle have no
Ca neighbour.

It therefore seems clear that the most conspicuous
differences of Si—-O and Al-O bond length depend on
the number of Ca neighbours of the O atom. Such
an effect has been suspected previously, e.g. by Smith
(1960), Smith, Karle, Hauptman & Karle (1960),
Radoslovich (1960); but is here conclusively demon-
strated. It means either that there are intrinsic
stresses in the 7-0O bonds due to the stresses applied
to them by the Ca—O bonds, or that the electrostatic
field of Ca acts directly on the bonds to lengthen
them. Which explanation is physically more realistic
cannot be decided on this evidence.

It also remains doubtful which of the lengths should
be regarded as ‘unstrained’, since there are certainly
other stresses operating besides those in the Ca-O
bonds—notably those affecting the bond angles at O.

It is not surprising, for example, that Si-O bonds in
this structure for O atoms with no Ca neighbours
should be shorter than in a structure such as quartz
where none of the O’s has any other neighbour.

No similar effects have been observed with certainty
in other felspars. For intermediate microcline, ortho-
clase and celsian, the scatter of individual bond lengths
within a tetrahedron is insignificant ((r) ~ 0-005 A
or less). For low albite, the scatter is rather large
(e(r)=0-021 A) but so is the standard error of deter-
mination (¢=0-019 A). For high albite, with about
the same o, the scatter is small (0-008 A). For reed-
mergnerite, NaBSisOs (with the felspar structure),
the scatter is rather larger in proportion (e&(r) =
0-017 A, 6=0-010 A), which suggests that the devia-
tions are real; but the margin is too narrow to allow
very definite conclusions. More detailed information
from three-dimensional analysis of the albites is
desirable.

(iii) Bond angles at Si and Al

Inspection of Table 2(f) suggests some degree of
uniformity within groups of four tetrahedra. Accord-
ingly, bond-angle strains (differences from the tetra-
hedral angle, 109-5°) for corresponding angles were
averaged over the four atoms whose symbols are
derived from any one of the set by operations 000, 00z,
m00, mOi—i.e. for atoms related topologically (not
exactly) by body-centring and mirror-plane operations.
The results (Table 10) show clearly that corresponding
angles for different atoms within a set have on the
average very small differences from one another as
compared with the differences between their means.
(Most of these differences are large compared with the
estimated experimental error, ~ 0-5°). Moreover,
while 7'y and 7' tetrahedra show quite different sets
of strains, tetrahedra containing Si or Al respectively
(related by operator z) have very similar strains,
except that those for Al are slightly (perhaps not
significantly) larger.



1029

HELEN D. MEGAW, C.J. E. KEMPSTER AND E. W. RADOSLOVICH

_60F G0+ LTF 01+ LO0F 810-0F G100+
g¥y+ 63C+ €3+ g1+ ge+ PL+ -3+ 39+ 9¢g+ 680-0+ 9¥0-0+
30F P0F g0F 60F GIF L10-0F 080-0F
ge+ €3+ -3+ 9.1+ 21+ g1+ o1+ pg+ TI— £80-0+ 880-0—
0+ €3+ g0F 80F LOF $20-0+ 180-0F
ge+ oOv+ $-0+ 81+ &1+ 81— g-g+ g3+ g3+ 930-0+ $€0-0+
30F SI¥F L0F 31F  LO0F 810:0F $00-0F
90— 90— 9:0— 80— 60— 33— g 1— e— 6.0+ €60-0— 1100+
¢0F 1-0F 6:0F SIF O01F 610-0F 610:0F
$8— 39— 6% — 69— v — Q-g— 0g— 39— 66— 0IT-0— 060-0—
$-0F LI1F SIF g3+ OI1F 0%0-0F 0300+
0e— 1-¢— 9:0+ 9-0+ 01— 6-3— 11— 83— ¥0— 9%0-0— G00:0—
LIF G-0F OIF 3%0-0F 3B8O-0F
¢0— 10+ g0— L0— 8¥— 60+ g¥+ 9-g+ 80+ 9-1+ 80+ $00:0+ 300-0—
0% F IF 1 1F 8€0-0F ZI0-0+
ev+ ¥+ ¥z + g0+ 10+ &0+ 0-¢+ Lo+ 31+ 6v+ 8¢+ GL0-0+ 8500+
g-gF L-0F 80F 610-0F 3I10-0F
¥+ 81+ 1+ L0+ L0+ &g+ g-1— 13+ 90— ¢+ 13+ $30-0+ 130-0+
o1 G-gF 60F 180-0F 6000 F
$8— G9— pe— e~ 83— &¥— 97— 39— 63— ¢8— 39— 881-0— ¥60-0—
9-0F L1F BIF L30-0F SI0-0F
39+ L9+ gg+ 1+ Le+ ¢+ g.g+ 9¢+ Leg+ L9+ 66+ gI1-0+ 160-0+
g0F 13+ ¢IF $00-0F 030-0F
69— G9— Ty — $-g— 3e— 8¥%— 8¥F— 6C¢— 68— $8— 69— 8%1-0— S0T-0—
v 9 /s wis 8 v S /1S v 18 v 1S v IS

———
uBIS[e) ourprueyg 0SB[OOYHI) QUI[OOIITIN afiqre y3ryg 931q[8 MO ojIyjIouy 931yjI0uB Ul
e3pe 0—0

o[8ue O-z-0

SUOTIJBIAGD PIBPUB]S IOV} PUB “BIPeYeI}9] JB[IUlS Ul sedpe pue se[due Surpuodsollod I0A0 SUBOUL OY} SISI[ O[qe) Y,

(Y w2) swrwygs a6pa uoipayvaga) Q—Q puv ($99462p u1) survs apbuw puog 01 [qe],

UOIPOYBIFO} IB[NTOI B I0] SON[BA WOIJ SUOI}BIAOD 918 SUIBIGS

ao

ad

oq

av

)4

av

ao

aqg

odq

av

)4

av
suoye
(0]

Lz
uoJIpeyRI}S}
yo odAy,



1030

Exactly similar effects are shown by an analysis
of the O-O bond-length strains, i.e. the differences
from the values 2-640, 2-860 A, corresponding to
regular tetrahedra with 7-O distances 1-614, 1-749 A
respectively. These are also shown in Table 10. The
consistent differences between the edges 7'1(4C) and
T2(AC) in a number of felspars was earlier noted by
Jones & Taylor (1961), who pointed out that it could
not be due to a difference in Si/Al ordering but must
‘be due to the general balance of forces as between
Si/Al and O on the one hand, and K (or Ba) on the
other.’

The more detailed analysis of the present paper
allows us to go further. Table 2(f), or its analysis in
Table 10, shows that in anorthite all tetrahedra of
the same type (71 or T's) tend to have the same shape,
i.e. the same angular strains, whatever their position
or orientation in the structure, and whatever the
nature of 7T'. These tetrahedra are not related by
symmetry, though of course their general arrangement
is not far from the symmetrical sanidine structure.
It therefore seems that the strains, and consequently
the stresses producing them, are not on the whole very
sensitive to the detailed coordinates of the atoms
and their departure from the higher symmetry.
(In so far as bond-length strains may be associated
with any of the same regularities as affect bond-angle
strains, similarity between tetrahedra of the same type
will have the effect of making their 7-O tetrahedral
means more nearly alike than would have been ex-
pected from a random distribution of the bond lengths
throughout the structure, thus tending to explain the
observation noted in § 2-1.)

Some striking facts emerge from comparison of the
bond angles with those in other felspars (Table 10).
The largest strains, those in 71(AB), T (AC), T1(4 D),
T2(AC), are observed in all the felspars studied; they
do not vary greatly within a structure, and the mean
value of each for a given structure is roughly constant
for all the felspars with cations of similar valency
(Table 11), the ratio of the strains for divalent and
monovalent cations being about 1-7. The strains must
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therefore be due (like the 7-0 bond-length elonga-
tions) to the effect of the A4 cations. The stresses
causing them must, like the strains, be relatively
insensitive to small differences in atomic coordinates
and configuration round A. Since the 4 atom is nearly
on a mirror plane of symmetry, and is nearly repeated
by a body-centring translation, this explains the close
resemblance in shape between different tetrahedra in
the same structure as well as between different struc-
tures. The relative insensitivity of the strain to the
departure from overall monoclinic symmetry is par-
ticularly striking: the monoclinic (or nearly mono-
clinie) potassium felspars are only slightly different
from the distinctly triclinic albites, but quite different
from monoclinic celsian.

3-4. Bond-angle strain as a consequence of electrostatic
repulsion
The mechanism by which the cation affects the
O-T-0 bond angle must be treated in terms of electro-
static forces, because even if homopolar forces con-
tribute to the Ca—O bond we have no means of
estimating them. As a nearest-neighbour effect, the
. electrostatic field of Ca polarizes each neighbouring O
and thereby influences both the attractive and repul-
sive forces between O and its other neighbours. For
second-nearest-neighbour effects, we must consider
Ca—Ca and Ca-T electrostatic repulsions; this looks
formidable at first glance but is greatly simplified if
one recognizes the shielding of Ca by its surrounding
O’s. Since these are polarizable, one may represent
them in a erude model by conducting spheres of radius
about 1-5 A. For this purpose one must include all
O’s at distances not greater than the cation—cation
distances to be studied, since it is not merely O’s in
contact with Ca which serve to shield it. Then only
where there are gaps in the shell of O’s is cation—cation
repulsion likely to be important. This effect can be
visualized using lines of force. The ideas used here
are the same as those underlying Pauling’s electro-
static-valence concept.

Table 11. Comparison of bond angles showing large strain: mean values over all similar tetrahedra

Large cation Felspar Mean bond-angle strain (degrees)
T(AB) T,(AC) T,(4D) Ty(AC)
Nat Low albite —4:9 +4-6 —4:6 =50
Nat High albite —4-8 +2-5 —4-6 —25
K+ Microcline —35 +3-6 —35 —4-3
K+ Orthoclase —34 + 51 —34 —4-9
K+ Sanidine —4-2 +3-5 —34 —4-9
Catt Anorthite -77 +6-3 —-17-3 —-6'1
Bat+ Celsian —6-7 +6-5 —17-5 -73
1-valent Mean —4-2 +0-3 +39 +04 -39 +03 —43 +04
2-valent Mean -72 +0-4 +64 +01 —7-4 +0-1 —6-7 +0-4
Ratio —— vent 17 16 19 16

1 —valent



HELEN D. MEGAW, C.J. E. KEMPSTER AND E. W. RADOSLOVICH

+O,
00a(1)

Fig. 3. Sketch stereogram of the environment of T',(0000).

The fact that the largest O—T-O strains are those
involving the three angles round 7:-Oa(l} is suf-
ficiently striking to provide an empirical starting
point for study. The geometrical consequence of these
strains can be seen from Fig. 3. As compared with a
regular tetrahedron, angles AB and AD are too small,
AC too large; in other words, T-04(1) is tilted further
downwards. To restore regularity, it would be neces-
sary to increase the y coordinate of O4(1), and hence
(because of the centre of symmetry and pseudo-
symmetry axis) to increase the edge 04(1)-04(1) and
the bond angle at O4(1). The latter is already slightly
too large (135° instead of the unstrained 130°), but in
view of the softness (high compliance) of 7-O-T
angles, further changes are hardly likely to give
prohibitive energy increase. On the other hand,
04(1)-04(1) is a shared edge between two Ca poly-
hedra; its length, ~3-2 A, is also rather high for such
an edge. It seems that there are strong forces tending
to make it contract.

(o) B
ol )=(e[om)

@

®)

Fig. 4. Environment of a pair of Ca atoms related by a centre
of symmetry; section in plane perpendicular to [001].
(a) Packing diagram, with radii drawn to scale; (b) lines
of force, with atomic centres as in (a), but radii reduced to
show effect more clearly.

The electrostatic origin of the forces tending to
shorten 04(1)-04(1) can be shown as follows. The
shielding shell of Ca comprises ten O’s (two each of
04(1), 04(2), Os, Oc, Op). The only serious gap in it
is at the edge 04(1)-Ou(l), across which there is
another Ca at a distance of about 4 A. Fig. 4(a) shows
a section in a plane perpendicular to [001], drawn
approximately to scale. The abnormally short Ca-O
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distance is shown by the cut-off of the circles at a
common chord. Assuming the 04(2)-04(2) distance
to be fixed by other parts of the framework not shown
(cf. below, §4-1), the Ca—O distances could be made
more nearly normal by moving the Ca’s nearer
together and the O4(1)’s further apart, thus relieving
the strain in the angles at 71 and O4(1) also. But the
Ca’s are kept apart by their electrostatic repulsion,
and this also draws together the two O4(1)’s, as shown
in Fig. 4(b). Not only the interrelation of the three
largest strains, but their independence of the detailed
symmetry of the felspar, and their dependence on
cation valency, are thus explained simultaneously.
(It may be noted in passing that since O4(2) is ab-
normally close to Ca it is in a strong electrostatic field
and is polarized accordingly, with consequent effect
on its other bonds).

4. Linkages and stability of structure

4-1. Monoclinic approximation

We now consider the linked framework as a whole,
to see how the details hitherto examined fall into place.
Figs. 5(a), (b), (c¢), are stylized diagrams of parts of
the structure; (a) and (b) are viewed down [010], and
may be compared with the scale diagram in Fig. 1,

Fig. 5(a) X

Fig. 5. Stylized diagrams of parts of structure. (a) Projection
on (010) of slab bounded approximately by y= +0-3,
(b) projection on (010) of slab bounded approximately by
y=0-1, 0-4, (c) projection down [001] of whole 7 A cell.
In () and (b) the 7 A cell is outlined by dashed lines.
Pairs of atoms and bonds which are superposed in projec-
tion are shown by double lines. Heavy lines E-(F, F’) and
G-H indicate links affecting z* repeat distance. Labelling
of atoms is given in bottom left-hand corner.
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L *

X
and (c} is viewed down [001]. Neither in Fig. 5 nor
in the following discussion is any distinction made
between Si and Al, because, as has been shown above,
their difference gives only second-order effects. The
full sanidine symmetry is retained for this first stage
of the discussion.

Fig. 5(a), which includes all atoms except Oc,
shows the striking pseudosymmetry which exists

Fig. 5(c).

THE STRUCTURE OF ANORTHITE, CaAlSi,0,. II

within a (010) slab of the structure bounded approx-
imately by y= +0-2. To this approximation, atoms
Oz and Op are equivalent, and the symmetry is ortho-
rhombie, atoms Ca, O4(1) and O4(2) each lying at
the intersection of two mirror planes. The slab is built
from a double sheet of 7-O tetrahedra, each sheet
containing four-membered rings bound tightly to rings
in the other sheet by a complex system of cross-
girders emanating from Ca and Ou4(2) (Fig. 5(c)).
Obviously the whole slab forms a fairly rigid unit.

Fig. 5(b) shows the linkage between one slab and
the next, between the upper rings of the slab in 5(a)
(centred on y=0) and the lower rings of the one
above it (centred on y=3}). The linkage is through Oc.
The orthorhombic pseudosymmetry has completely
disappeared. Atoms Op are topologically distinguished
from Op by their participation in a four-membered
ring with O¢, which stands in a vertical plane linking
the layers.

The repeat distance in the z* direction is deter-
mined by two different sets of links, shown in Figs.
5(a) and (b) by the heavily-drawn lines E—(¥, F’) and
G-H respectively. Other links are negligible, tending
mainly to produce shear. For equilibrium, the stresses
in E~(F, F') and G-H must be equal and opposite.

Fig. 6. Stylized diagram showing detail of linkage
in region G-H of Fig. 5(b).

But we have seen that E—(F, F’) is in compression,
shown by the shortness of the bond Ca—04(2). Hence
G-H must be in tension. This is shown in more detail
in Fig. 6 (cf. also 5(c)). Assuming that the stress
manifests itself more in bond angle strains than in
T-0 bond length strains, we expect positive strains
in the angles marked in Fig. 6, and negative strains
in To(BD) and T»(AC), the latter rotating the bond
Te-Oc¢ downwards towards the plane of the paper.
The angle 7'i(BD) is also concerned in the link
E—(F, F'), where a negative strain is required, but
its effect on this length is only half its effect on G-H,
and may therefore be ignored; on the other hand,
To(BD) should have a positive strain in E—(F, F')
and we cannot predict whether this or the negative
strain required for G-H will predominate. Table 12
shows a comparison of predicted and observed strains
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Table 12. Comparison of observed and predicted bond angle strain in x* repeat distance

Mean bond-angle strain (degrees)

T,(BC) T,(BD) T,(AC) Ty(BC) T.(BD) T,(CD)
Predicted + + - + Indeterminate +
Anorthite +26 +4-4 —6-1 +2-4 +0-6 +4-9
Celsian +3:0 +4-2 —-17:3 +3-0 +2-9 +36
Low albite —0-6 +1-2 —50 +3-5 +1-0 +2-1
High albite —15 +30 —~2-5 —1-8 +1-3 +74
Microcline +32 +0-2 —~4-3 +1-2 +1-2 +3-3
Orthoclase +0-7 +0-5 —4-9 +1-8 +1:6 +1-3
Sanidine +1-4 +2-4 —4-9 +0-4 +2-1 +2-3

for these angles in all felspars. The agreement is very
good for anorthite and celsian, and the same trend
can be seen in the other felspars, though with more
irregularities. Possibly this good agreement, and the
regular distribution of strain it entails, are associated
with the stability of the anorthite structure.

Fig. 5(c) shows part of the structure viewed down
[001]. The complexity of the linkages in the double
layers near y=0 and { is very evident, and contrasts
with their paucity between double layers. One would
expect to find the structure amenable to shear in this
plane. The observed lack of strain in the Oc¢ angles
(Table 2(g)) suggests that they can adjust themselves
independently of internal changes in the double layers,
at the cost of lateral displacement, resulting macro-
scopically in changes of « and y angles.

4-2. Distortion from monoclinic symmelry

The next step is to examine what distortions follow
as a result of the small Ca radius.

In Fig. 3(a) it was shown that the z* coordinate
of Ca is rather rigidly determined. In the (001) plane,
however, the approximation of Fig. 5(a) shows that
Ca has four equidistant Og and Op neighbours, which
cannot all come into contact with it because they are
impeded by O4(1) and O4(2). For the larger cations
K and Ba, they can do =0, and the cation remains on,
or very close to, the symmetry plane. But the smaller
Ca moves off the symmetry plane along one diagonal
of the square Op0pOpOp, and these O’s readjust
themselves so that three make good contact and one
is pushed right out, its bond angle increasing to about
170° in the process.

These displacements of O cause stresses in the
framework which cannot be entirely accommodated
by strains in the nearest 7-O bonds and 7' bond
angles. The tetrahedra are rotated or displaced, and
so transmit part of the strain to their neighbours.
If the next Ca atom is fairly close, its direction of
displacement may be determined by that of the first.
In this way the displacements may be cooperative
either over closed groups of atoms or over the whole
periodic structure.

The detailed pattern of Ca displacement in an-
orthite can be predicted qualitatively with the help of
two general principles: (i) that when strong internal

Fig. 7. Schematic projection of double layer on (010),
showing distortion from original symmetry due to small Ca.

stresses are related by symmetry or pseudosymmetry
in the ideal structure, this symmetry will be retained,
at least locally, in the distorted structure, (ii) that all
periodicities will remain as small as is compatible
with (i). In anorthite, there are strong oppositely-
directed electrostatic repulsions acting along Ca-Ca
across the centre of symmetry at (0, 0, 0); this centre
is retained. There is a strong compression along
Ca—04(2); this direction remains, locally, an axis
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of pseudosymmetry, and the plane defined by
T2-04(2)-T: tilts about it, out of the vertical, giving
equal rotations (or displacements) to the two 7.
octahedra and their adjacent O’s (Fig. 7). In this
way large bond-angle strains can be introduced at
Op and Op, without change of bond length. Since
there is one large O-angle for every Ca, and two are
associated with every O4(2), half the O4(2)’s are
unaffected. Those affected are (like everything else)
centrosymmetric about (0, 0,0) (Fig. 7). Hence suc-
cessive double rings in the z direction cannot be true
Tepeats; exact repetition occurs only after twice the
original ¢ distance. There is nothing in the sideways
linkage to forbid the original C-face-centred arrange-
ment, which is therefore retained. A body-centred
arrangement would have the disadvantage, because
of its centre of symmetry at (%, , ) (referred to the
cell in Fig. 5(a) and (b)), of introducing two 170° angles
into the same vertical 4-membered ring, which looks
unlikely.

The features illustrated schematically in Fig. 7 can
be seen in the projection of the actual structure,
Fig. 1 (best shown in 1(a)).

The argument thus predicts a 14 A C-face-centred
structure, having the environments of Ca(000) and
Ca(zt0) identical with each other and different from
those of Ca(z00) and Ca(0:0). This result, as was made
clear in Paper I, is a very good approximation to
observed fact. The Si/Al alternation, however, does
not satisfy the C-face-centring condition, and the
consequent atomic displacements result in small dif-
ferences between members of each of the above pairs.

The argument would apply equally to albite, except
that the electrostatic forces and their resultant strains
are smaller, and mistakes of sequence therefore more
likely. This point will be discussed elsewhere.

No use has been made here of the individual bond-
angle strains at 7' which show departures from
monoclinic symmetry. These, and the individual bond
angles at O, may contain much useful information.
The structure also offers opportunities for studying
lattice parameters in terms of interatomic forces,
along the lines suggested in § 4-1. On both these points,
it would be particularly valuable to trace the changes
of structural detail which accompany macroscopic
changes and changes of composition. Structure deter-
minations of other felspars in the plagioclase series are
in progress (Chandrasekhar, Fleet & Megaw, 1960;
Kempster, 1957; Waring, 1961), and further discus-
sions may wait till anorthite can be compared with
them.

5. Summary

The unit cell of anorthite consists of four subcells of
equal volume in which the atoms have nearly but not
quite identical configurations. The structure is perfect,
with no disorder, within the limits of accuracy of the
work, which are fairly narrow. Si and Al tetrahedra
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alternate so that every oxygen has one Si neighbour
and one Al. This distribution means that pairs of
subcells related by the body-centring vector have the
same Si/Al distribution; nevertheless their atomic
coordinates are not as closely similar as pairs which
have unlike distribution, and are related by C-face-
centring. The tetrahedra are not perfectly regular—
an effect observed in earlier felspar studies concerning
bond angles, and here extended to their bond lengths.
Small differences in tetrahedral mean bond lengths
are rather less than would have been expected from
the scatter of lengths within tetrahedra, but greater
than is allowed for in Smith’s original discussion of
bond lengths.

One Ca atom is perhaps best considered as 6-coor-
dinated, though with a 7th more distant neighbour;
the other three are 7-coordinated. All the Ca bond
lengths are fairly normal; the closest contact is to
04(2), which is a short bond in other felspars. Though
the Ca environments (the ‘cavities’ in the structure)
are of different shapes, there is no evidence that any
of them has a possible alternative site giving reason-
able bond lengths to the oxygens surrounding.

The temperature factors, though not determined
with great accuracy, are informative. The low values
of B for Si/Al and O are characteristic of a perfect
structure (as contrasted with the B value for oxygen
in felspars with Si/Al disorder, which includes a
‘broadening factor’). The high value for Ca is com-
parable with that in other felspars, and may represent
either a true or a frozen-in thermal amplitude.

The ‘strains’ (departures from ideal values) of bond
length and bond angle give important information.
Individual Si-O and Al-O bonds show, on the average,
significant decreases as the number of Ca neighbours
of the O drops from 2 to zero. The bond angle strains
at all 7' atoms of the same crystallographic type
(Ty or T2) show marked similarity, independent of
symmetry or Si/Al ratio in different felspars; the
three largest, in particular, can be shown to depend
on cation charge rather than cation size. The role
played by cation—cation repulsion across the symmetry
centre (0, 0, 0) is very important. It controls not only
the distortions of the tetrahedra compatible with
monoclinic symmetry, but also the pattern of dis-
placements and rotations consequent on the relatively
small size of Ca. Consideration of its effect on the z*
repeat distance leads to a qualitative prediction of
bond-angle strain in the other Si and Al angles which
agrees with that observed. Consideration of its effect
on Ca displacement predicts the close approximation
to a C-face-centred lattice which is also found ex-
perimentally.

It is rather surprising that the explanation of the
structure can be carried so far without any need to
invoke the effects of differences between Si and Al
in either radius or charge. Obviously these must play
a part; but it would appear that the part is smaller
than has often been tacitly assumed. Deviations of
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individual values of bond lengths and bond angles
from their group averages give a basis for further
study.

It is a pleasure to express our indebtedness to Dr
W. H. Taylor for suggesting this work, and for his
support and guidance throughout its execution. It
will be obvious how much it owes to his forethought
and wise planning, by which detailed structural
studies of the key members of the felspar family have
been made available for comparison with each other.
We are grateful to Mr P. H. Ribbe for carrying out
the bond angle calculations.
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The Molecular and Crystal Structure of 3-Benzoylanthranil (2-Phenylisoisatogen)
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The crystal structure investigation of a compound (C,;H¢NO,), previously known as 2-phenyliso-
isatogen, has established its chemical constitution to be that of 3-benzoylanthranil, (or 3 benzoyl
2,1-benzisoxazole). The structure was solved by means of a well-resolved projection down a short
axis and was refined with three-dimensional data using differential syntheses and least squares
methods. The hydrogen atoms were located by difference syntheses. The configuration of the
molecule and the bond lengths are discussed in terms of valence-bond resonance theory.

Introduction

Ruggli (1919) and Ruggli, Caspar & Hegedus (1939)
assigned the tricyclic oxide bridge structure, I, to
2.phenylisoisatogen, the isomer obtained by treating
2-phenylisatogen (Baeyer, 1882) with hot methanolic
H.S04. A re-examination of this structure by Cohen
& Pinkus (1959) cast doubt on the validity of the
Ruggli formulation. The more plausible structure, II,
was proposed, for which a planar or nearly planar
molecule might be resonance stabilized cis or frans

AC15 — 67

with respect to the central C;~Cs bond. This X-ray
investigation was initially undertaken to verify this
formulation and to decide between the two possible
stereo-isomers, IT or IIT. It became possible at an
early stage in the analysis to identify the molecule as
II, which is 3-benzoylanthranil and this was briefly
reported by Pinkus, Cohen, Sundaralingam & Jeffrey
(1960). A more detailed study was then pursued
because of the interest in the detailed stereochemistry
of the molecule and its interpretation in terms of
resonance theory.



